A New Approach to Seagrass Restoration Through Landscape Manipulation

CSA Ocean Sciences Inc.

Anne McCarthy, Mark S. Fonseca, and *Raymond F. Dennis III

Bonner Bridge Seagrass Mitigation Oregon Inlet, Northern Outer Banks, North Carolina

Google earth

HA SIO NOAA U.S. Navy NGA GEBC

De D 2013 Google

© 2007 National Geographic Society. All rights reserved.

Presentation Topics

 Define Problem – Availability of Seagrass Mitigation Sites

• Proposed Solution –Landscape Manipulation; Acre-Years of Service

• Next Steps – Ecological Services

Problem: Availability of Suitable Seagrass Mitigation Sites

Issues

- Public project critical economic and safety needs
- Project injures critical seagrass habitat
- No nearby injury sites
- Choice:
 - Out-of-kind mitigation
 - Experimental in-kind mitigation

Solution: Landscape Manipulation to Create Acre-Years of Service

Time-compress maps of different seagrass beds across a gradient of wave exposure

Peer Reviewed Literature Basis

Fonseca et al., 1983; Fonseca and Bell 1998; Fonseca et al. 1998; Fonseca et al. 2000; Kelly et al. 2001; Fonseca et al. 2002; Bell et al. 2006; Fonseca et al. 2007

MITIGATION STRATEGY

- Reduce wave energy on patchy seagrass beds
- Facilitate bed coalescence
- Increase cover per unit area seafloor
- Create acre-years of seagrass service flows (lift)

MITIGATION APPROACH

- Install temporary wave barrier
- Create wave energy shadow
- Based on regression, forecast change in seagrass cover

SIMULATIONS

- Solve for optimal orientation
 - wind direction
 - wind speed
 - wind frequency

Site 1: Chevron shape facing dominant northerly exceedance windsSite 2: Chevron shape facing secondary winds; utilize nearby island

CSA

Next Steps: Consequences for Ecological Services

Landscape Pattern - Patchy to Continuous

- Altering seagrass landscape pattern satisfies:
 - Basic regulatory requirements; and
 - Published site selection criteria
- Potential for changes in ecological functions relative to:
 - Faunal composition;
 - Movement; and/or
 - Abundance

Faunal Response to Change in Landscape Pattern

- Demonstrated response to changes in landscape patterns
- Variable with species
 - Small motile fauna respond to edge
 - Larger motile fauna generally do not
 - Epiphytic species little pattern
 - Sessile species (esp. infauna) some response

rdennis@conshelf.com

8502 SW Kansas Avenue · Stuart, Florida 34997 www.csacoean.com · 772-219-3000

